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When modal analysis techniques are used to determine spectral densities of
the responses of distributed-parameter linear mechanical structures subjected
to stationary random excitation, a summation of all modal spectral densities
(both direct- and cross-) should be performed. A very common textbook
recommendation is that the modal cross-spectral densities may be neglected if
certain conditions are satis"ed. In this paper that recommendation will be
discussed. Using a simple example the in#uence of modal cross-spectral densities
on the spectral densities of some responses of a simply supported beam will be
investigated. Response standard deviations will be determined and the importance
of the modal cross-spectral densities in some frequency ranges, covering also
resonance frequencies of the beam, will be demonstrated. Special interest is devoted
to extreme values of some response processes. ( 1999 Academic Press
1. INTRODUCTION

When solving stationary random vibration problems by the use of modal analysis,
direct- and cross-spectral densities of the modal co-ordinates will be obtained. To
"nd the spectral density of a structural response in the physical co-ordinates, all the
modal spectral densities (direct- and cross-) should be summed. In the literature, it
is sometimes stated that the modal cross-spectral densities may be neglected if

(a) the system is lightly damped, and
(b) the eigenfrequencies of the system are well separated,

see, for example, references [1}6].

The "rst one to point out conditions under which the modal cross-spectral
densities may be neglected seems to have been Bolotin, who already in 1961 stated
that the conditions for possible neglection of the modal cross-terms are violated in
two cases, namely when the damping is very large or when the elastic system has
multiple or closely spaced eigenfrequencies. The conditions to be satis"ed read [7]:
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where f
i
is relative damping in mode i, and u

i
is the ith eigenfrequency of the

structure. This statement seems to have been interpreted so that the cross-terms
may always be neglected if the conditions are satis"ed. As will be shown below this
is not the case. The conditions might be necessary, but not su$cient. One
indication of this problem is given in reference [5], where the modal closeness is
commented upon: &&No general operational de"nition of closeness exists''.

The role of the cross-spectral densities has been discussed by several authors, see
for example references [7}11]. In reference [9], Elishako! uses a single mass
constrained by two springs in orthogonal directions for illustrating the signi"cance
of cross-correlations in random vibration analysis. Crandall [10] noticed that
localization of response occurred in taut strings, beams, membranes and plates
subjected to broad-band random vibration. The localization of response occurred
at the driving point and at its symmetric counterparts of the structure. In a shell, the
localization e!ect may be hardly detected if the modal cross-terms are omitted,
see reference [11], where a survey and discussion of the importance of the modal
cross-terms is given.

In reference [12], examples were given where modal cross-spectral densities were
shown to play an important role in the response spectral densities of a structure,
although the Bolotin conditions were satis"ed. These examples concerned
structural responses to narrow-band random excitation. The structural parameters
were such that an anti-resonance of the structure appeared at, or in the vicinity of,
the frequency range of the random excitation. In such a case, none of the modes of
the structure dominates in the response, and consequently, the contributions from
the cross-spectral densities may be important. It was demonstrated that modal
cross-spectral densities contribute to the response of a structure mainly in the
frequency range close to anti-resonances of the structure. This has also been
pointed out in, for example reference [13], where the e!ects of modal coupling on
the acoustic power radiation from panels were investigated. In reference [13] it was
found that under o!-resonant excitation the contributions due to modal coupling
may be important.

In reference [14], some other examples were given where modal cross-spectral
densities played an important role in the structural response although the
conditions of small damping and well separated eigenfrequencies were satis"ed.
The bandwidth of the excitation was broadband, so that it covered several
resonance frequencies of the structure (a taut string). The excitation was distributed
along the whole structure and not, as in Crandall's problem, concentrated to one
single point. In reference [14] a band-limited white noise excitation, covering the
eigenfrequencies eight to 12 of the string, was used. It was demonstrated that
the approximate mean square value of the string displacement, obtained by
neglecting the modal cross-spectral densities, could di!er from the exact mean
square value by a factor of three (or even more).

A similar problem of decoupling of modes arises in structures that are non-
proportionally damped, see references [15}18]. The simplest and the most common
approach to this problem is to neglect the o!-diagonal terms and replace the full
damping matrix with a diagonal one. The two conditions given above, (a) and (b),
should then be satis"ed [16]. As pointed out in references [15, 18], the input
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frequency may have a signi"cant e!ect on the approximation error obtained when
neglecting the o!-diagonal terms, c.f., reference [12]. In references [17, 18], it was
also pointed out that even if the approximation error is small in the modal
co-ordinates, the error in the physical co-ordinates need not be small.

In many applications, the distribution of extreme values (maxima and minima) of
a structural response is important. For example, a small error of the extreme values
of the stresses in a structure may in#uence the fatigue life of the structure
considerably. When calculating extreme values of a random process, the bandwidth
of the process will play an important role. It will be demonstrated that neglect of the
modal cross-spectral terms may result in an error of the process bandwidth that is,
in the example studied here, of the order of !20 to #55 per cent.

In the following sections, the response of a simply supported beam subjected
to a stationary random loading will be investigated by use of the modal analysis
technique. Spectral densities are plotted and standard deviations are calculated.
Results where the modal cross-spectral densities have been neglected are compared
with corresponding exact results (&&exact'' in the meaning that the modal cross-
spectral densities are included*but still approximate due to mode truncation).
As will be demonstrated, the di!erence between an approximate response and
the corresponding exact one may be quite large at some positions along the
beam.

2. ANALYSIS

2.1. RANDOM EXCITATION

Consider the random vibration of a simply supported beam of length ¸. The
excitation of the beam is a stationary random transverse force f (x, t) per unit
length. In a general case, the force could be random along the length of the beam
and random in time.

First, a force f (t) (t is time) is considered. The autocorrelation function of the
force f (t) will be denoted by R

ff
(q) where q is time separation. One has

R
ff

(q)"E[ f (t) f (t#q) ] where E stands for expectation.
The one-dimensional spectral density of the force f (t) will be denoted by S

ff
(u)

where u is time frequency in radians per second. One has

S
ff

(u)"
1
2n P

=

~=

R
ff

(q) e~*uqdq. (1)

The auto-correlation function R
ff

(q) is

R
ff

(q)"P
=

~=

S
ff

(u) e*uqdu. (2)

Relationships (1) and (2) thus form a one-dimensional Fourier transform pair.
Similarly, for a process which is random in space (a random function f (x)

of distance x, say) one obtains the autocorrelation function R
ff

(m)"



160 T. DAHLBERG
E[ f (x) f (x#m )] where m is spatial separation. The one-dimensional spectral
density of the function f (x) will be denoted by S

ff
(c), where c is spatial frequency in

radians per meter (c is also called wave number, the wavelength j is j"2n/c). The
spectral density S

ff
(c) is de"ned as in equation (1) (c replaces u and m replaces q).

The two-dimensional correlation function of the force f (x, t) will be denoted by
R

ff
(m, q) where m is spatial separation and q is time separation. One has

R
ff

(m, q)"E [ f (x, t) f (x#m, t#q)]. (3)

The two-dimensional spectral density of the force f (x, t) will be denoted by
S
ff

(c, u), where c and u are de"ned above. By de"nition one has

S
ff

(c, u)"
1

(2n)2 P
=

~=
P

=

~=

R
ff

(m, q) e~* (cm`uq) dmdq. (4)

The cross-correlation function R
ff

(m, q) can, also by de"nition, be written

R
ff

(m, q)"P
=

~=
P

=

~=

S
ff

(c, u) e* (cm`uq) dcdu. (5)

Relationships (4) and (5) thus form a two-dimensional Fourier transform pair.
The study presented here will be restricted to a force that is constant along the

length ¸ of the beam and stationary random in time t, so that f (x, t)"f (t), which
inserted into equation (3) gives R

ff
(m, q)"E[ f (t) f (t#q)]"R

ff
(q). The two-

dimensional spectral density S
ff

(c, u) of the force f (x t)"f (t) is then obtained, by
equation (4), as

S
ff

(c, u)"
1
2n P

=

~=

R
ff

(q) e~*uq dq]
1
2n P

=

~=

e~*cm dm"S
ff

(u)d (c), (6)

where d( ) is the Dirac delta function.
By use of R

ff
(m, q)"R

ff
(q) and the relationships equations (2) and (5) it can be

seen that, for f (x, t)"f (t),

S
ff

(u)"P
=

~=

S
ff

(c, u) e *cmdc. (7)

By introducing the spatial separation m"s
2
!s

1
into equation (7), one obtains

the cross-spectral density between values of the random function f (x, t) at the
two points x"s

1
and s

2
. The cross-spectral density, here called S

fs1 fs2
(s
1
, s

2
, u),

becomes, by the use of equation (6),

S
fs1 fs2

(s
1
, s

2
, u)"P

=

~=

S
ff

(u) d (c) e*c (s2~s1) dc"S
ff

(u) e0. (8)

Thus, when the excitation f (x, t) is f (x, t)"f (t), one obtains S
fs1 fs2

(s
1
, s

2
, u)"

S
ff

(u).
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Finally, if the excitation is random white noise (uncorrelated in time, band-
limited or not), then the spectral density S

ff
(u) is a constant, S

0
say, so that

S
ff

(u)"S
0
.

Next, turn to the response of the beam due to white noise excitation.

2.2. BEAM RESPONSE

Let y (x, t) be the random response of a simply supported beam subjected to the
excitation f (x, t). The cross-spectral density S

yx1 yx2
(x

1
, x

2
, u)"S

yy
(x

1
, x

2
, u)

(index on y will be omitted from now on) between values of the response function
y (x, t) at the two points x"x

1
and x

2
will be determined.

Let H(x
i
, s

j
, u) be the frequency response function giving the response y (x, t) at

point x"x
i
due to a unit harmonic input force F (t) at point x"s

j
. In the case of

N separate input forces F
sj

(s
j
, t), j"1,2, N, the cross-spectral density

S
yy

(x
1
, x

2
, u) between values of the response function y(x, t) at the two points

x
1

and x
2

becomes (* indicates complex conjugate)

S
yy

(x
1
, x

2
, u)"

N
+
j/1

N
+
k/1

H *(x
1
, s

j
, u)H (x

2
, s

k
, u) S

Fsj Fsk
(s
j
, s

k
, u). (9)

Let one input force F
sj
(s
j
, t) (in Newtons) represent the excitation from the

distributed load f (x, t) (in Newtons per meter) at position x"s
j
along the length

Ds
j
of the beam. One then obtains the approximation F

sj
(s
j
, t)"f (s

j
, t)Ds

j
. The

relationship between the cross-spectral density of the point forces F
sj

at s
j
and F

sk
at s

k
and the cross-spectral density of the distributed load f (s, t) at the same points

is S
Fsj Fsk

(s
j
, s

k
, u)"S

fsj fsk
(s
j
, s

k
, u)Ds

j
Ds

k
[4], which together with equation (9)

gives

S
yy

(x
1
, x

2
, u)"

N
+
j/1

N
+
k/1

H*(x
1
, s

j
, u)H (x

2
, s

k
, u) S

fsj fsk
(s
j
, s

k
, u)Ds

j
Ds

k
. (10)

For NPR (implying Ds
j
P0 and Ds

k
P0) the relationship (10) becomes

S
yy

(x
1
, x

2
, u)"P

L

0
P

L

0

H*(x
1
, s

j
, u)H (x

2
, s

k
, u) S

fsj fsk
(s
j
, s

k
, u) ds

j
ds

k
. (11)

Now introduce the excitation f (x, t)"f (t), which is also uncorrelated in time so
that S

ff
(u)"S

0
. Then, according to equation (8), S

fsj fsk
(s
j
, s

k
, u)"S

ff
(u)"S

0
,

and one obtains the cross-spectral density

S
yy

(x
1
, x

2
, u)"S

0 P
L

0

H*(x
1
, s

j
, u) ds

j P
L

0

H (x
2
, s

k
, u) ds

k
. (12)

From equation (12), a direct spectral density S
yy

(x, u) is obtained by simply
substituting x

1
"x

2
"x.
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2.3. FREQUENCY RESPONSE FUNCTION H

The relationship (12) will be further investigated below, but "rst the frequency
response function H (x

i
, s

j
, u) will be determined by the use of modal analysis. The

frequency response function H (x
i
, s

j
,u) gives the response y(x, t) at x"x

i
to a

unit harmonic input force F(t)"F
0
e*ut at x"s

j
(F

0
"1 N). Thus, y(x, t)"

H(x, s
j
, u)]F

0
e*ut for any x3[0, ¸].

The equation of motion of a beam (bending sti!ness EI, damping c, mass m per
unit length, and length ¸) loaded by a transverse force f (x, t) is

EI
L4y
Lx4

#c
Ly
Lt

#m
L2y
Lt2

"f (x, t). (13)

The angular eigenfrequencies ue
l
of an undamped simply supported beam are

u
%l
"l2n2S

EI
m¸4

, where l"1, 2, 3,2, (14)

and the eigenmodes become

W
l
(x)"A

l
sin Aln

x
¸B for l"1, 2, 3,2, (15)

where the vibration amplitudes A
l
are to be determined.

To determine the frequency response function H (x
i
, s

j
, u), the beam should be

excited by a unit harmonic force with frequency u at the position x"s
j
. The

excitation force f (x, t) may then be written f (x, t)"F
0
d(x!s

j
) e*ut where d( ) is

the Dirac delta function. The harmonic (frequency u) response y(x, t) to this
excitation may be written in terms of the undamped natural modes (eigenmodes) of
the beam. One obtains

y(x, t)"
=
+
l/1

W
l
(x) e*ut"

=
+
l/1

A
l
sinAln

x
¸B e*ut , (16)

which in the beam equation (13) gives (e*ut omitted)

=
+
l/1
GEIAl

n
¸B

4
#c iu!mu2HA

l
sin Aln

x
¸B"F

0
d(x!s

j
). (17)

Multiplying equation (17) by sin (knx/¸) and integrating over the length ¸ gives

GEIAl
n
¸B

4
#c iu!mu2HA

l

¸

2
"F

0
sinAl

n
¸

s
jB , (18)

from which A
l
is solved. One obtains

A
l
"

2 sin (lns
j
/¸)

¸mMu2
%l
#iuc/m!u2N

F
0
. (19)
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The harmonic response y (x, t) to the excitation force F (t)"F
0
e*ut at x"s

j
may

now be summarized by the use of equations (16) and (19). One "nds

y(x, t)"
=
+
l/1

2 sin (lns
j
/¸) sin (lnx/¸)

¸mMu2
%l
#iuc/m!u2N

F
0
e*ut. (20)

Thus, the frequency response function H (x
i
, s

j
, u) is, with c/m"b,

H (x
i
, s

j
,u)"

=
+
l/1

2 sin (lns
j
/¸) sin (lnx

i
/¸)

¸mMu2
%l
#iub!u2N

. (21)

2.4. RESPONSE SPECTRAL DENSITY S

The cross-spectral density S
yy

(x
1
, x

2
, u) of the response function y(x, t) at the

two points x
1

and x
2

can now be expressed in terms of the undamped natural
modes (the eigenmodes) of the beam. Assume that the excitation f (x, t)"f (t) is
uncorrelated in time, so that S

ff
(u)"S

0
. Equations (12) and (21) then give

S
yy

(x
1
, x

2
, u)"S

0
]

P
L

0

=
+
l/1

2 sin (lns
j
/¸) sin (lnx

1
/¸)

¸mMu2
%l
!iub!u2N

ds
j P

L

0

=
+
n/1

2 sin (nns
k
/¸) sin (nnx

2
/¸)

¸mMu2
%n
#iub!u2N

ds
k
. (22)

Noting that

P
L

0

sin Aln
s
j
¸B ds

j
"G

2¸
ln
0

if l odd,

if l even,

(23)

one obtains

S
yy

(x
1
, x

2
, u)"

16S
0

n2m2

=
+

l/1,3,2

=
+

n/1,3,2

sin (lnx
1
/¸) sin (nnx

2
/¸)

lnMu2
%l
!iub!u2N Mu2

%n
#iub!u2N

.

(24)

This is the complete expression of the direct- and cross-spectral densities of the
displacement response of a beam subjected to white noise loading f (x, t)"f (t).
A direct spectral density is obtained simply by putting x

1
"x

2
. Only symmetric

modes are included because of the symmetric loading of the beam. An
approximation and simpli"cation of this expression will now be discussed.

2.4.1. Approximate spectral density

The in#uence of the modal cross-spectral terms (the product terms lOn in
equation (24)) on the response spectral density S

yy
(x

1
, x

2
, u) will now be
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investigated. If the damping is small and if the spacing between adjacent
eigenfrequencies is large, then the modal cross-spectral terms in equation (24) may
(sometimes) be neglected, and one obtains

S
yy

(x
1
, x

2
, u)

!11309
"

16S
0

n2m2

=
+

l/1,3,5,2

sin (lnx
1
/¸) sin (lnx

2
/¸)

l2M(u2
%l
!u2)2#b2u2N

. (25)

The exact spectral density, equation (24), and its approximation, equation (25),
will be investigated in connection with some numerical examples.

2.5. NUMERICAL EVALUATIONS

In all curves given below, the following numerical values have been used: bending
sti!ness EI"1 (Nm2), length ¸"1 (m), mass per unit length m"n4 (kg/m). These
numbers have been selected to give the undamped eigenfrequency u

%-
"1 rad/s.

The damping parameter b"0)5 (1/s) has been used throughout. If nothing else is
stated, the number of modes used is 30, i.e., summation is made over the
eigenfrequencies l where l"1, 3, 5,2, 59.

The damping parameter b may be expressed as a fraction of critical damping. For
a one-degree-of-freedom system the critical damping is c

#3*5
"2JkM"2Mu

%
,

where k is sti!ness, M is mass and u
%
is the undamped eigenfrequency u

%
"Jk/M.

When the modal damping is critical, the value of the damping parameter b"b
#3*5

may be expressed as (b is damping per meter and m is mass per meter)

b
#3*5

"

c
#3*5
m

"

2mu
%l

m
"2l2n2JEI/m¸4. (26)

The damping b"0)5 thus gives 25 per cent of critical damping in mode one, 6)25
per cent of critical damping in mode 2 ( j"2), and so on.

Direct (x
1
"x

2
"x) spectral densities S

yy
(x

1
, x

2
, u)"S

yy
(x,u), normalized with

respect to S
yy

(x, 0), have been plotted for x"0)1¸ and x"0)45¸ (Figures 1(a, b))
for the frequency range u"0}200 rad/s. The full line curves in the "gures include
the modal cross-spectral terms as given by equation (24) and the dashed curves give
the approximation, equation (25).

It is noted from Figure 1 that the modal cross-spectral terms are important if
the spectral density has to be calculated between the resonance frequencies u

%l
.

Close to the resonance frequencies the terms in the approximation, equation (25),
are the most important, of course, and the cross-spectral terms (the double
summation) in equation (24) may be neglected.

An undamped system has the so-called anti-resonance frequencies between the
resonance frequencies. These anti-resonance frequencies cannot be detected when
the approximation (25) is used, see Figure 1. It is also seen in the "gure that for large
frequency ranges (u equals 50}170 rad/s, for example) the approximate solution lies
almost entirely on one side of the exact solution (below the exact solution at
x"0)1¸ and above at x"0)45¸). At the frequency u"100 rad/s, for example, the



Figure 1. Normalized spectral densities S
yy

(x,u)/S
yy

(x, 0) plotted for (a) x"0)1¸ and
(b) x"0)45¸. The full line curves include modal cross-spectral densities as given in equation (24), and
the dashed curves give the approximate solution according to equation (25).

MODAL COUPLING IN RANDOM VIBRATION ANALYSIS 165



166 T. DAHLBERG
ratio of the two solutions (exact/approximate) is 5)33 at x"0)1¸ and 0)56 at
x"0)45¸.

2.5.1. Standard deviation of response

The in#uence of the modal cross-spectral terms on the standard deviation p
y
(x)

of the de#ection y (x, t) will now be investigated. The standard deviation of the
response is obtained from the mean square value of y (x, t) as p

y
(x)"

(E[y2 (x, t)])1@2 (the mean value of the process is zero here, giving that the standard
deviation equals the r.m.s. value). The mean square value is obtained by the
integration of the spectral density S

yy
(x, u) over the frequency u. The direct spectral

density S
yy

(x,u) is obtained from equations (24) and (25), by putting x
1
"x

2
"x.

One has

E[y2(x, t)]"P
=

~=

S
yy

(x, u) du. (27)

Now suppose that the excitation of the beam is band-limited white noise such
that

S
ff

(u)"G
S
0
0

if u
1
)DuD)u

2
,

elsewhere.
(28)

This implies that the integral in equation (27) should be evaluated between !u
2

and !u
1

and between u
1

and u
2
. The frequency interval of excitation selected is

from u
1
"50 rad/s to u

2
"160 rad/s. This frequency range covers the

eigenfrequencies eight to 12 of the beam (of which only nine and 11 are excited
here).

The integration limits yield a bandwidth e (e de"ned below in equation (33)) of
the excitation process as e"0)49, which is neither extremely narrow-band (e"0),
nor extremely broadband (e"1).

The imaginary part of a (cross-)spectral density is an odd function of u. When
integrated over an even interval the imaginary part of the integral becomes zero.
The real part of the spectral density is an even function of u. The mean square value
in equation (27) may then be calculated as (R means &&real part of '')

E[y2 (x, t)]
%9!#5

"

32S
0

n2m2
]

P
u2

u1

R
=
+

l/1,3,2

=
+

n/1,3,2

sin (lnx/¸) sin (nnx/¸)du
lnMu2

%l
!iub!u2N Mu2

%n
#iub!u2N

. (29)

When the modal cross-spectral terms in equation (29) are neglected, the
expression simpli"es to

E[y2 (x, t)]
!11309

"

32S
0

n2m2 P
u2

u1

=
+

2

sin2 (lnx/¸) du
l2M (u2

%l
!u2)2#u2b2N

. (30)

l/1,3,



MODAL COUPLING IN RANDOM VIBRATION ANALYSIS 167
The square root of the two expressions, equations (29) and (30), will now be
compared. The mean square value E[y2 (x, t)] of the response y(x, t) has been
calculated as a function of x for 0(x)¸/2. Due to symmetry one has
E[y2 (x, t)]"E[y2(¸!x, t)]. The mean square value has been normalized with
respect to the factor 32S

0
/n2m2 (thus, not the same as in Figure 1). The root of the

normalized mean square value gives the (normalized) standard deviation p
y
, which

is then plotted.
In Figure 2(a) the (normalized) standard deviation p

y
of the beam de#ection is

plotted as a function of position x/¸ along the beam (note the symmetry for
x/¸'0)5). In Figure 2(b) the percentage error, 100(p!11309

y
!p%9!#5

y
)/p%9!#5

y
, has been

plotted. It is seen that this error may be quite large: approximately !40 per cent at
x"0)1¸ and #60 per cent at x"0)45¸.

In acoustic radiation, the de#ection velocity yR (x, t) plays an important role [13].
The mean square spectral density of yR (x, t) is obtained from the spectral density of
the de#ection y(x, t) as

S
yR yR

(x,u)"u2S
yy

(x, u). (31)

Integration of equation (31) over the same frequency range as above yields exact
and approximate standard deviations p

y5
as given in Figure 3a (normalized as p

y
).

The relative error of the approximate solution is given in Figure 3b. Also here, the
relative error is quite large at certain positions along the beam.

For the beam acceleration yK (x, t), the result is similar: the approximate value of
the standard deviation p

yK
may deviate as much as $30 per cent from the exact

value.

2.6. EXTREME VALUES

In many practical situations, the extreme values of a random process may
be of great interest (for example in ocean and civil engineering, fatigue calcula-
tions, and so on). In the last part of this study, the extreme values of the
beam de#ection will be investigated. The expected mean value of the maximum
beam de#ection during a time period ¹ may be calculated as a factor (the peak
factor) multiplying the standard deviation p

y
. One has (c is the Euler constant,

c"0)577212)

E[y
.!9

(x)]"AJ2 ln N
.%!/

#

c

J2 ln N
.%!/

#2Bp
y
. (32)

The time period ¹ should be large, so that ln N
.%!/

A1 (if not, another formula
should replace equation (32), [19]). N

.%!/
is the number of mean value (here zero)

up-crossings of the process during the time period ¹. One has

N
.%!/

"N
.!9

J1!e2"
1
2n

p
yK

p 5
¹J1!e2, (33a)
y



Figure 2. (a) Normalized standard deviation p
y
of beam de#ection y(x, t) for x/¸(1

2
(symmetry for

x/¸'1
2
). The full line curve includes the modal cross-spectral terms as given in equation (24), and the

dashed curve gives the approximate solution according to equation (25). (b) Error (in per cent)
obtained when modal cross-spectral terms are neglected.
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Figure 3. (a) Normalized standard deviation p
y5
of beam de#ection yR (x, t) for x/¸(1

2
(symmetry for

x/¸'1
2
). The full line curve includes the modal cross-spectral terms as given in equation (24), and the

dashed curve gives the approximate solution according to equation (25). (b) Error (in per cent)
obtained when modal cross-spectral terms are neglected.
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Figure 4. (a) Bandwidth of response spectral density of beam de#ection y (x, t) for x/¸(1
2

(symmetry for x/¸'1
2
). The full line curve includes the modal cross-spectral terms as given in

equation (24), and the dashed curve gives the approximate solution according to equation (25).
(b) Error (in per cent) obtained when modal cross-spectral terms are neglected.
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where N
.!9

is the number of maxima of the process during the time period ¹ and
the bandwidth parameter e is de"ned as

e"S1!
m2

2
m

0
m

4

. (33b)

In the bandwidth de"nition (33b) the moments m
i
(i"0, 2, 4) of the spectral density

are

m
i
"P uiS

yy
(u)du. (33c)

Using that p2
y
"m

0
, p2

y5
"m

2
and p2

yK
"m

4
, one obtains N

.%!/
"p

y5
¹/2np

y
.

(The peak factor in equation (32) is sometimes seen with N
.!9

instead of N
.%!/

in the formula. It is then valid for narrow-band (e"0) processes only, as then
N

.!9
"N

.%!/
, see equation (33a).)

The bandwidth e of the response process y(x, t) is shown in Figure 4(a). It is seen
that the bandwidth varies considerably along the beam (the bandwidth of the
excitation process was e"0)49). The error due to the exclusion of the modal
cross-spectral densities is between !20 and #55 per cent, Figure 4(b). The peak
factor (the factor multiplying the standard deviation p

y
in equation (32)) does not,

however, vary very much. Using ¹"50 s, one obtains the peak factor as being
close to 3)77, see Figure 5(a). The mean value of the maximum de#ection of the
response during the time period ¹ will then be close to 3)77p

y
, Figure 5(b), and the

error due to the approximation is very close to the error of the standard deviation
itself, i.e., between !40 and #60 per cent, see Figure 2(b).

3. DISCUSSION

By studying the vibration of a simply supported beam subjected to a stationary
random loading it has been demonstrated that the modal cross-spectral densities
may play an important role in a structural response even if the system is lightly
damped and the eigenfrequencies are well separated. In the calculations made here,
the random excitation covered the frequency range from 50 to 160 rad/s. This
frequency range includes the "ve eigenfrequencies u

%j
where j"8, 9, 10, 11 and 12

(of which only the two odd-numbered eigenmodes were excited by the random
loading). Similar results should be obtained if the excitation is coloured noise with
low intensity outside the given frequency range and high intensity within the
interval.

If the main part of the excitation spectral density falls within the frequency range
u

%7
"49 rad/s and u

%13
"169 rad/s, then it is easy to see from Figure 1 that there

could be a signi"cant di!erence between the two response spectral densities.
Unfortunately, nothing can be said about the sign of the terms neglected. In Figure
1(a), it is seen that the approximate spectral density gives too low values in the
frequency range 49}169 rad/s at x"0)1¸ whereas it gives too large values at
x"0)45¸, Figure 1(b). At other positions along the beam the modal cross-spectral
terms may cancel each other.



Figure 5. (a) Peak factor of beam de#ection y (x, t) for x/¸(1
2
(symmetry for x/¸'1

2
). (b) Expected

mean of maximum value of the beam de#ection y(x, t) during time periods ¹"50 s. Also replotted in
(b) is the standard deviation of the beam de#ection y (x, t) (from Figure 2). The error of the peak factor
is small compared to the error of the standard deviation. The error of the expected maximum value is
therefore similar to the error of the standard deviation, see Figure 2(b). The full line curves include the
modal cross-spectral terms as given in equation (24), and the dashed curves give the approximate
solution according to equation (25).
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Figure 6. Standard deviation p
y
of beam de#ection y(x, t). (a) equation (29) with summation over

modes 1}59 (full line curve, same as full line curve in Figure 2) and equation (29) with summation over
modes 7}13 only (dashed curve). (b) Percentage error due to the modal truncation.
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The discrepancy between the approximate and the exact spectral density may be
very large if the excitation spectral density is narrow-band with frequencies between
two adjacent eigenfrequencies, see Figure 1.

In this study, the frequency interval of integration was selected to demonstrate
that the in#uence of the modal cross-spectral terms may play an important role in
the structural response. In other frequency ranges, the contributions from the cross-
spectral terms may cancel each other. For example, excitation of the structure
(and the corresponding integration) in the frequency range from u

1
"5 to u

2
"

200 rad/s yields an error of the standard deviation p
y
that is less than (or equal to)

6 per cent. If the "rst eigenmode is excited, that mode will dominate the response
and the error due to the exclusion of the cross-spectral terms will be very small.

Another case when the error due to the neglect of the cross-spectral terms may be
small is when the number of modes included in the calculation is small. In that
case, however, the truncation error will probably be large. In the example studied
here, taking only modes 7}13 into account (covering the excitation frequency range
50}160 rad/s) would give a truncation error of the standard deviation of the beam
de#ection as presented in Figure 6. In this case, the additional error made by
omitting the cross-spectral terms would be very small; an extra error of less than
3 per cent was obtained when omitting the cross-spectral terms.

4. CONCLUSIONS

By a simple example, it has been demonstrated that the two conditions

(a) the system should be lightly damped and
(b) the eigenfrequencies should be well separated

are not su$cient to ensure that the modal cross-spectral densities may be neglected
when calculating the response spectral density of a structure even if the random
excitation of the structure is broadband so that several eigenmodes of the structure
are excited.

In the calculations performed here, it has been demonstrated that the error made
when neglecting the modal cross-spectral densities may be very large. Although
the excitation frequency range covered several eigenfrequencies of the structure
(a beam), an error of more than 60 per cent of the standard deviation of the beam
de#ection has been demonstrated. Factors that in#uence the cross-modal
contributions are not only the damping and the eigenfrequency separation, but also
the loading (its frequency content and its location on the structure), and the
location where the response is calculated.

When rejecting modal cross-spectral densities in a calculation, it should be kept
in mind that a large number of terms are omitted. Even if every term omitted is
small, the sum of the terms need not be small. Also, at a particular point of the
structure, where the response is calculated, the contributions from the direct modal
spectral densities need not be large (one, or several, of the modes might have a node
at that point). Therefore, there is no reason to recommend any rejection of the
modal cross-spectral densities.
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APPENDIX A: NOMENCLATURE

A
l

amplitude in mode l
c damping (N s/m)
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E [ ] expectation
EI beam bending sti!ness (Nm2)
f distributed force (N/m)
F point force (N)
i imaginary unit
j, l indices
¸ beam length (m)
m mass distribution (kg/m)
m

i
ith moment of spectral density

N
.!9

, N
.%!/

number of maxima, number of mean value up-crossings
R real part of
R(q) auto-, cross-correlation
s space co-ordinate (m)
S(u) means square spectral density
t time co-ordinate (s)
¹ time period (s)
x space co-ordinate (m)
y beam de#ection (m)

b damping parameter (c/m)
c wave number (rad/m) (also Eulers constant c"0)577212)
d Dirac delta function
e bandwidth (!)
f modal damping (!)
j wavelength (j"2n/c)
m space separation (m)
p standard deviation (m, m/s, m/s2)
q time separation (s)
u angular frequency (rad/s)

( 0 ) time di!erentiation
( )* complex conjugate

(some notations are de"ned where they appear)
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